Lattice gauge notes VI

- two flavors: three parameters, m,, mg and 6
- correspond to: tilt, warp, and angle between them

- back to the lattice, K near critical should mimic
- parity broken for odd flavors, K > K.
- 2 flavors and the Aoki phase — follow chiral review

The Ginsparg Wilson relation

I begin by considering the Fermionic part of some action as a quadratic form
Sp=> %Dy
i

The usual “continuum” Dirac operator D = ) v,D,, naively anti-commutes with s, i.e.
[vs, D] = 0. Then the change of variables ¢ — €54 and 9 — 1e*" would be a
symmetry of the action. This, however, is inconsistent with the chiral anomalies. The
conventional continuum discussions map this phenomenon into the Fermionic measure
(Fujikawa, 1979).

On the lattice we work with a finite number of degrees of freedom; thus, the above variable
change is automatically a symmetry of the measure. To parallel the continuum discussion,
it is necessary to modify the symmetry transformation so that the measure is no longer
invariant. Remarkably, it is possible to construct actions exactly invariant under the altered
symmetries.

To be specific, one particular modification (Neuberger, 1998b,c; Luscher, 1998; Chiu and
Zenkin, 1999; Chandrasekharan, 1999) that leads to interesting consequences starts with
the change of variables

v —> eiG’m(l—i—aD)w

E —_— Eeie’y‘i’\
where a represents the lattice spacing. Note the asymmetric way in which the independent
Grassmann variables ¢ and v are treated. Requiring the action to be unchanged gives
the relation (Ginsparg and Wilson, 1982; Hasenfratz, Laliena, and Niedermayer, 1998;

Hasenfratz, 1998)
vsD + Dvs + aD~vysD = 0.

I also assume the Hermeticity condition y5Dvys = DT. The “Ginsparg-Wilson relation”
along with the Hermititicity condition is equivalent to the unitarity of the combination
V=1+aD.



Neuberger (1998b,c) and Chiu and Zenkin (1999) suggested a simple construction of an
operator satisfying this condition. For this an appropriate operator V' could be found via
a unitarization of an undoubled but chiral symmetry violating Dirac operator, such as the
Wilson operator D,,. This operator should also satisfy the above Hermeticity condition.
From this build

V = —Dy(D} D,)~/2.

More precisely, find a unitary operator to diagonalize D} D,,, take the square root of the
eigenvalues, and undo this unitary transformation.

At this point the hopping parameter in D,, is a parameter. To have the desired single
light Fermion per flavor of the theory, the hopping parameter should be appropriately
adjusted to lie above the critical value where D,, describes a massless flavor, but not so
large that additional doublers come into play (Neuberger, 1999; Golterman and Shamir,
2000). There are actually two parameters to play with, the hopping parameter of D,,, and
the lattice spacing. When the latter is finite and gauge fields are present, the location of the
critical hopping parameter in D,, is expected to shift from that of the free Fermion theory.
There is potentially a rather complex phase structure in the plane of these two parameters,
with various numbers of doublers becoming exactly massless modes. The Ginsparg-Wilson
relation in and of itself does not in general determine the number of massless Fermions.

Although the Wilson operator entering this construction is local and quite sparse, the re-
sulting action is not; it involves direct couplings between arbitrarily separated sites (Her-
nandez, Jansen and Luscher, 1999; Horvath, 1998, 1999). How rapidly these couplings fall
with distance depends on the gauge fields and is not fully understood. The five dimensional
domain-wall theory is local in the most naive sense of the word; all terms in the action only
couple nearest neighbor sites. Were one to integrate out the heavy modes, however, the
resulting low energy effective theory would also involve couplings with arbitrary range. De-
spite these non-localities, recent encouraging studies (Neuberger 1998c; Edwards, Heller,
and Narayanan, 1999; Borici, 1999; Hernandez, Jansen and Lellouch, 2000; Dong, Lee, Liu,
and Zhang, 2000; Gattringer, 2000) show that it may indeed be practical to implement the
required inversion in large scale numerical simulations. The overlap operator should have
memory advantages since a large number of fields corresponding to the extra dimension
do not need to be stored. The extent to which this outweighs the additional complexity in
implementation remains to be determined.

This approach hides the infinite sea of heavy Fermion states alluded to above. It is implicit
in the presence of zero modes in the inversion. This is directly related to the connection
with the index theorems in the continuum; for recent reviews see Adams (2000) and Kerler
(2000). Recent detailed analysis (Luscher, 2000; Kikukawa and Yamada, 1999) shows that
this operator is particularly well behaved order by order in perturbation theory. This has
led to hopes that this may lead the way to a rigorous formulation of chiral models, such
as the standard model.

When the mass is turned on, the chiral symmetry with an even number of flavors should
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make the sign of the mass irrelevant. A combination that becomes its negative under the
above transformations with an angle of pz is

mip(1 — D/2)¢

Notes on an overlap Hamiltonian

In these notes I explore a possible Hamiltonian version of the overlap operator. I start
directly with continuum time; this is not an attempt to find a transfer matrix from a
discrete time overlap formula. To do the latter sounds hard since the overlap operator is
not local. To do the reverse, i.e. to go from continuous to discrete time, should proceed
just as in my old papers involving a Wilson projection in the time-like direction. The
resulting operator will be local in time, but not in space.

To set things up let me review the continuum Hamiltonian, which is

He = [ do ylo(7- D+ m)p
with the canonical commutation relations

[’l/)(.’L‘), ¢T(y)]+ = 6(567 y)

and I use Hermitian gamma matrices. In momentum space
dp N
H.= / o V0T - F+m)y
™
Charge conservation is manifested in the fact that H. commutes with
U= [dz o™ _ i6Q
For axial symmetry we want to use
Uy = e [ do ¥T19 _ (ifQs.

The mass term is not invariant under this, and of course with gauge fields present the
anomaly comes in.

Define D. by
H. = 4¢TyDp

with the integral over space implicit. The space for D, is square integrable spinor functions.
This operator satisfies
vsD.vs = D}

’YODC’YO = DZ
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both properties that will carry over to the lattice. However, the continuum property
[D, D] = 0 will not carry over to the Wilson Hamiltonian. For that case D, can have
different left and right eigenvalues and the eigenvectors are not in general orthogonal.
On the other hand, the overlap operator constructed below is diagonalizable since it is
constructed from a unitary operator.

The free continuum eigenvalues of D, are A = m =+ i|p| with an infinite range for the
momentum. For every imaginary eigenvalue there is a complex conjugate one obtained by
applying either vy or v5 to the eigenvector:

Dch = )\Qb
Deysé = vsDlp = N ys5¢

This is still true with the gauge fields turned on.

The eigenvectors for D, are different than those for the Hermitean operator h = oD,
since these objects do not commute. The latter can be found via (yoD.)? = DID,, giving

free energy eigenvalues £+/p? + m2.

Since voysh = —hvoys, if h¢ = E¢, then hypys¢ = —E~vyys¢ and energy eigenvalues
always occur in positive/negative energy pairs. This is still true when gauge fields are
present.

There seems to be one more operator to study, hs = 5D, which is Hermitean and has the

same eigenvalues as hg = 9D, but different eigenvectors, again since they don’t commute.
The operators h and hs anticommute.

Now for the lattice, start with the Wilson Hamiltonian, written in the form

Hy = Ty Dwp.

The sum over space is implicit here. I still have the analog properties from the continuum:

vsDwys = Di,
YoDw o = D;EV
[Dw, DI, 1 =0

Note the symmetry between 7y and 5.

For free fields in momentum space, I write

Dw =M + Z (i sin(g;) + (1 — cos(q;)))



The critical case is M = 0. Without gauge fields this can be diagonalized to give eigenvalues

Ai(qy) = +i, /Z sin®(g;) + M + Z(l — cos(g;))

This is kind of like a superposition of a bunch of circles. The real eigenvalues are in the
set {M,M+2, M +4,M+6}. As for the continuum case, 75 relates eigenvalues with their
complex conjugates.

Now try to do something like Herbert does with GW, defining

H =1y Dy
and construct
V = Dy (D}, Dy )~ /2
D=V +1
Depending on the choice of M, this can have robust zero energy states. Since V is unitary,
these occur for eigenvalues of V near -1. It would appear that near the continuum limit

to avoid doubling we want to be in the first “circle” with —2 < M < 0. For finite lattice
spacing this range will be renormalized by gauge fields.

Since Dy is not in general normal, there seem to be two different unitary operators one
could consider here, i.e. Vi = Dy (D}, Dyw)~'/2 and Va = (DwD},)~/2Dy;. These are
actually equal:

Vi = Dy (D}, Dw)~1/?

=5 <’7’5DW ((75DW)T'75DW)_1/2>

=5 (((’YsDW)T’YaDW) e 75DW)
= (DwD},)"Y*Dy
=V,
= yssign(vsDw )
= Yosign(voDw )
where I have used the fact that 5Dy is Hermetian, thus commuting with its dagger, and

the condition v5 Dy s = D;T,V.

Since V' is unitary, D is normal and can be diagonalized, just as for the continuum operator.
This unitarity also means that D satisfies a GW like relation

Viv=1=1-D— D'+ DD
=1-D —y5Dvs + Dys D5
or

Dvs +vsD — DysD =0
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A similar relation is true with gy replacing s
D~y + 7D — DyoD =0

The symmetry between vy and 75 seems to be important.

To get this into a nicer form, multiply by v and define h = vy D to give
hys — vsh — hysvoh = 0,

Now use the fact that vpvys anticommutes with A to write this in the form

[hy5(1— D/2)] = 0.
This hints that v5(1 — D/2) is what we want for the axial charge. Define
Qs = ¢Tys(1— D/2)y = ¢lgsy.
This commutes with our Hamiltonian. Verification:
YoDvs — Yo Dv5D/2 — v57v0D + vsDvoD/2 = yo(Dvs + 15D — DysD) =0
by the HGW relation.

This is an exact symmetry of the Fermion part of the Hamiltonian. However Q5 involves
link variables and thus does not commute with the kinetic part of the gauge field Hamil-
tonian. This must be crucial for anomalous processes.

The energy and chiral charges of individual fermion states are highly correlated. To see
this note that
D = voh =2 — 27v5¢5

Rearranging
Yoh + 2v5¢5 = 22

This times its dagger gives
h?/4+q% =1.

Thus the remarkable result that the single fermion states lie on a circle in the E/2, Qs
plane! The doublers all appear around E = 2, thus for them (5 vanishes. Unlike =5, the
eigenvalues of g5 are not +1.

Applying vovs to an eigenvector flips the sign of both E and g5, showing that eigenvalues
pair across diagonals of this circle. When no gauge fields are present ¢ — vy5¢* will flip
the sign of the energy without changing the axial charge. Then the states form a quartet
lying at £F, +q5. Then the axial charge of the vacuum, when negative energy states are
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filled, will vanish. When gauge fields are present, the link variables reduce this four fold
symmetry to the diagonal one only and the vacuum can have axial charge.

Now we can see how the anomaly works for the U (1) one D case, paralleling almost exactly
what Ivan and I did. The gauge field effectively shifts the allowed momenta of p = 27n/L
to p = 2eN/L + a/L. As alpha runs from 0 to 2w, we pass through the analogue of a
tunnelling event. All states of a given n step forward to the next one.

Start with a single particle state of low momentum and, say, positive chirality. Then as the
momentum goes from 0 to 7, the axial charge decreases from 1 to zero, and then continues
to decrease to -1 at 2r. When h and ¢5 are simultaneously diagonalized, the periodicity
in momentum is doubled; as ¢ runs from 0 to 47 all states are smoothly connected. This
motion is just like what Ivan and I did, except now the motion is entirely on a circle.

In the adiabatic anomaly process mentioned to above, the modes passing through zero
are related to the zero modes in the Lagrangian formulation. To see this more explicitly,
consider adiabatically changing the Hamiltonian so H = H(t) = v¥'h(t)y) where t runs
from say —T'/2 to T/2 and T is some large number. In particular, assume

d
—h(t) = 0(1/T)

Then consider the i’th eigenvector x; () satisfying

h(t)x(t) = E;(t)x(t)
I assume no malicious time dependent phases are inserted so that

d

X)) =0(@/T)

Now construct
o(t) = e Wiy (1)
This satisfies J
(4 +10) 0 = 00/7)
or in another form

(20 + D) 60 = 01/).

We have an approximate zero mode of the Euclidian Dirac operator if this is normalizable.

This is the case if
>0, t—T/2

i B 0"y 1

If x is normalized, then the norm of ¢ is

T/2
/ gt e—2tE(t)
_1/2



Note that there is a related wave function if we reverse the flow of time

$(t) = e Oi(t)

This satisfies

(-5 +4)) 30 =0/1)

and is normalizable if
<0,t—T/2

B 0"y 12

Is there some generalization of this that avoids the adiabatic assumption? There ought to
be since the continuum index theorem has no such assumption. Note that the four dimen-
sional operator Dy = (704 + D(t)) satisfies the usual hermeticity condition s Days = D].
This means that eigenvalues should occur in complex conjugate pairs, and any isolated zero
modes must remain real in their eigenvalues.

Questions:

1. How does isospin fit in. The above chiral charge does not commute with the gauge
kinetic term, but that is expected since we don’t want an exact singlet chiral symmetry.
Does there exist an exactly conserved flavored chiral charge?

2. How do we hook things up for a chiral theory with anomaly cancellation, say the 21111
model. Everything is totally finite and well defined so far; can this be continued?

To parallel my continuum understanding of this problem, I want to couple the gauge field
to a sum of local chiral currents for the various species and then get nice commutation
relations when anomalies cancel. But these are non-local currents, so I'm not sure where
to go next.



